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SUMMARY

Settling of a large solid particle in bioconvection �ow caused by gyrotactic microorganisms is investi-
gated. The particle is released from the top of the bioconvection chamber; its settling pattern depends
on whether it is released in the centre of the bioconvection plume or at its periphery. The Chimera
method is utilized; a subgrid is generated around a moving particle. The method suggested by Liu and
Wang (Comput. Fluid 2004; 33:223–255) is further developed to account for the presence of a moving
boundary in the streamfunction-vorticity formulation using the �nite-di�erence method. A number of
cases for di�erent release positions of the particle are computed. It is demonstrated that bioconvection
can either accelerate or decelerate settling of the particle depending on the initial position of the particle
relative to the plume centre. It is also shown that the particle impacts bioconvection plume by changing
its shape and location in the chamber. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Bioconvection provides a powerful tool to manipulate mass transfer in microvolumes of
�uids. This may have potential pharmaceutical and bio-technological applications. This paper
investigates a possible application of bioconvection to control settling of a large solid particle,
which may be useful to control sedimentation in microvolumes.
Motile microorganisms swim in a particular direction because of di�erent stimuli such as

phototaxis, chemotaxis, or gyrotaxis. This paper considers gyrotactic microorganisms, such
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as many species of algae. Because these microorganisms are bottom heavy, their swim-
ming direction is determined by the balance of gravitational and viscous torques. Gyrotactic
behaviour results in the accumulation of these microorganisms in the regions of most rapid
down�ow. Since the algae are typically 3–5% more dense than water, the density in the
regions of down�ow becomes larger than in the regions of up�ow. Buoyancy increases veloc-
ities in both up�ow and down�ow regions, enhancing velocity �uctuations and introducing a
hydrodynamic instability [1–3]. The induced convection �uid motion leads to the development
of bioconvection plumes. Many experimental papers [4–7] have described the formation of
gyrotactic plumes with regular patterns in algal suspensions.
Geng and Kuznetsov [8, 9] investigated the settling of small solid particles in a suspension

of motile gyrotactic microorganisms. It was found that mixing induced by bioconvection slows
down settling of such particles which leads to a more uniform number density distribution
of solid particles along the height of the chamber. In these studies, the particles were small
and their number was large so that they were modelled as a continuous phase having its own
number density distribution.
A large number of research papers addressed moving objects in a �uid. Hu et al. [10]

used the �nite element method for the computation of settling a solid object in a liquid. In
this study, the motion of the solid object was tracked by an arbitrary Lagrangian–Eulerian
(ALE) scheme. Gan et al. [11] presented a direct numerical simulation of sedimentation of
large solid particles in a �ow �eld induced by natural convection. The cases of one and two
large settling particles were investigated. Hsiao and Chahine [12] applied the Chimera method
to simulate the bubble dynamics in a vortex �ow. A moving Chimera grid was generated to
describe the bubble surface motion. Russell and Wang [13] developed a Cartesian grid method
for modelling multiple moving objects in a 2-D incompressible viscous �ow. An underlying
regular Cartesian grid was used to resolve the moving boundary problem. Boundary conditions
for the moving boundary were satis�ed by superposing a homogeneous solution of Poisson’s
equation upon the initial solution for the streamfunction. The initial solution was generated
by neglecting the moving object in the �uid �ow.
The utilization of the streamfunction-vorticity formulation is an e�ective method for nu-

merical modelling of a 2-D incompressible �ow. However, its utilization to calculate the
values of the streamfunction and vorticity in a domain that contains moving boundaries still
provides a challenge. Liu and Wang [14] introduced a high order �nite-di�erence method in
multi-connected domains. This method provides an algorithm for computing boundary con-
ditions for streamfunction and vorticity in a �xed multi-connected domain. In this research,
the method developed in Reference [14] is extended to allow for moving boundaries in the
domain �lled with an incompressible �uid.
This paper considers a large particle (in a 2-D model utilized in this research it is rep-

resented by an in�nitely long cylinder, see Figure 1(a)) settling in a chamber in which the
bioconvection plume is already fully developed. A �nite-di�erence method based on the mov-
ing Chimera grid scheme is utilized. The vorticity and streamfunction are introduced into the
Navier–Stokes equations to eliminate the pressure.
It is assumed that bioconvection plumes occur periodically. The two-dimensional computa-

tional domain coincides either with one or two periodic cells (each periodic cell contains a
single bioconvection plume). The height of the periodic cell is H and its width is L, where
L is a typical plume spacing and �=H=L is the aspect ratio of the periodic cell. Ghorai and
Hill [3] studied the e�ect of the aspect ratio on bioconvection and found that the steady-state
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Figure 1. (a) Schematic diagram of a large particle settling in developed bioconvection, �ow. Chimera
grid system: (b) global and subgrid mesh; and (c) subgrid mesh.

bioconvection plume was stable for �=1. Increasing � slowed down the solution’s conver-
gence to steady-state. This paper assumes that �=1.

2. GOVERNING EQUATIONS

2.1. Dimensional governing equations

Governing equations for a bioconvection plume caused by gyrotactic microorganisms are given
in References [2, 3] as
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Momentum equation

�0

(
@V
@t
+ (V · ∇)V

)
= − ∇pe + ��V+ nm�m��mg (1)

Continuity equation

∇ ·V=0 (2)

Conservation of motile microorganisms

@(nm)
@t

= − div(nmV+ nmWmp̂− Dm∇nm) (3)

where Dm is the di�usivity of microorganisms (this assumes that all random motions of
microorganisms can be approximated by a di�usive process); nm is the number density of
motile microorganisms; pe is the excess pressure (above hydrostatic); p̂ is the unit vector
indicating the direction of microorganisms’ swimming (equations for this vector are obtained in
Reference [1]); V is the velocity vector, (Vx; Vy);Wmp̂ is the vector of microorganisms’ average
swimming velocity (Wm is assumed to be constant); ��m is the density di�erence between
microorganisms and water, �m − �0; �m is the volume of a microorganism; � is the dynamic
viscosity of the suspension; and �0 is the density of water.
The motion of the solid particle is described by Newton’s second law

m
dVx
dt
=Fx; m

dVy
dt
=Fy; I

d�
dt
=T

and
dx
dt
=Vx;

dy
dt
=Vy;

d�
dt
=! (4)

where m=�p(�d2=4) is the mass of the particle, I =m(d2=8) is the polar moment of inertia
of the particle, d is the diameter of the particle, ! is the particle’s angular velocity, � is the
angular velocity vector, Fx is the x-component of the total external force on the particle, Fy

is the y-component of the total external force on the particle, and T is the mechanical torque
on the particle.
The force terms are due to gravity and the viscous force that the �uid exerts on the surface

of the particle. Since the particle is symmetric, the viscous friction on the surface of the
particle is the only contributor to the torque

Fx =
∫
�

(
�
@V�

@n
· x̂

)
ds

Fy =
∫
�

(
�
@V�

@n
· ŷ

)
ds+

�p − �0
�p

(�d2=4)g (5)

T=
∫
�

(
�
@V�

@n
· d
2

)
ds

where � is the surface of the particle and V� is the tangential �uid velocity along the surface
of the particle.
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2.2. Dimensionless governing equations

Utilizing the streamfunction-vorticity formulation, the governing equations can be recast in
the following dimensionless form:

�∗ = −∇2 ∗ (6)

Sc−1
(
@�∗

@t∗
+ V ∗

x
@�∗

@x∗ + V ∗
y

@�∗

@y∗

)
= ∇2�∗ −

(
Rm

@n∗
m

@x∗

)
(7)

@n∗
m

@t∗
= −∇ · [n∗

m(V
∗ +W ∗

m p̂)− ∇n∗
m] (8)

The dimensionless variables in Equations (6)–(8) are de�ned as

x∗ =
x
L
; y∗=

y
L
; t∗=

Dm
L2

t; u∗=
@ ∗

@y∗ ; v∗= − @ ∗

@x∗ ; V∗=V
L
Dm

W ∗
m =Wm

L
Dm

; n∗
m =

nm
�nm

; Sc=
�
Dm

; G=
BDm
L2

; Rm =
�nm�m��mgL3

�0�Dm

(9)

where asterisks denote dimensionless quantities.
Ghorai and Hill [2, 3] have shown that if the inertia terms in the momentum equation

are neglected (which is justi�ed for bioconvection �ows because of a very low Reynolds
number), the vector p̂, which determines the swimming direction of microorganisms, can be
computed as

p̂=

⎧⎪⎪⎨
⎪⎪⎩

(−	 − (	2 − 1)1=2; 0); 	¡ − 1
(−	; (1− 	2)1=2); |	|6 1
(−	+ (	2 − 1)1=2; 0); 	¿1

(10)

where 	=B�=G�∗. The parameter B is called the ‘gyrotactic orientation parameter’ by Pedley
and Kessler [15], who de�ned it as

B=
4��a3

mgh
(11)

where h is the displacement of the centre of mass of a gyrotactic microorganism from its centre
of buoyancy, m is the mass of the microorganism, and a is the radius of a microorganism.

2.3. Chimera grid scheme

The Chimera grid scheme is a grid embedding technique that is utilized in both 2-D and
3-D computations (see, for example Reference [12]). The Chimera scheme provides a sim-
ple method for domain decomposition. A structured subgrid is generated around the moving
particle settling in bioconvection �ow �eld. In this paper, a subgrid is created around the
particle and a global rectangular grid is created for the global �ow �eld, as demonstrated
in Figures 1(b) and 1(c). Equations (6)–(8) are solved separately for the global grid and
the subgrid. The communication between the global grid and the subgrid is implemented by
interpolation. The unknown values of variables in the subgrid boundary points are computed
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by interpolating these boundary points onto the global grid with the known values on the
global grid. Therefore, the computational problem for the subgrid becomes a boundary value
problem. In the global grid, the same procedure is required; the only di�erence is that an
arti�cial inner boundary is created around the moving particle. The problem for the global
grid becomes a boundary value problem by interpolating these arti�cial inner boundary points
onto the subgrid with known values on the subgrid. Equations (6)–(8) are transformed into
a polar coordinate system for the subgrid computations.

2.4. Initial and boundary conditions

Equations (6)–(8) are solved subject to the following boundary conditions. The side walls of
the computational domain are assumed shear-free in order to model plumes’ periodic condition.
The free surface is assumed stress-free, and the bottom wall is assumed rigid (a hydrodynamic
no-slip condition is imposed there). At the surface of the settling particle, the no-slip boundary
condition along with the no-penetration condition for the microorganisms is assumed. Under
these assumptions, the boundary conditions at the walls of the computational domain are
presented as

 ∗ = 0 at y∗=0; � and x∗= ± 0:5 (12a)

@ ∗

@y∗ = 0 at y
∗=0 (12b)

@2 ∗

@y∗2 = 0 at y
∗= � and

@2 ∗

@x∗2 = 0 at x
∗= ± 0:5 (12c)

Normal �uxes of microorganisms are zero through all boundaries of the computational domain
and the surface of the moving particle

J∗
m · ŷ = 0 at y∗=0; �; J∗

m · x̂=0 at x∗= ± 0:5 (13a)

J∗
m · r̂ = 0 at surface of the moving particle (13b)

where x̂; ŷ, and r̂ are the unit vectors in the x-,y- and r-directions, respectively, and

J∗
m = n∗

m(V
∗ +W ∗

m p̂)− ∇n∗
m (14)

is the dimensionless �ux of microorganisms.
To calculate the values of the streamfunction and vorticity on the moving boundary, they

are de�ned in the polar coordinate system

�∗ = −
(
@2 ∗

@r∗2 +
1
r∗

@ ∗

@r∗ +
1
r∗2

@2 ∗

@�2

)
(15)

V ∗
r =

1
r∗

@ ∗

@�
; V ∗

� = − @ ∗

@r∗ (16)

where r∗ is the dimensionless radial coordinate, r=L, (see Figure 1(c)) and V ∗
r and V ∗

� are
the dimensionless velocity components in the polar coordinate system.
Representing  ∗(r∗; �) through Taylor series expansion near the moving boundary and

assuming that �r∗ is constant (to simplify equations, the subgrid is constructed such that
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the two �rst grid layers around the particle are of uniform thickness; after that the grid
becomes non-uniform) the following equations are obtained:

 ∗(r∗
0 + �r∗; �) =  ∗(r∗

0 ; �) +�r∗ @ ∗

@r∗ +
(�r∗)2

2
@ ∗2

@2r∗

+
(�r∗)3

6
@ ∗3

@3r∗ +O((�r∗)4) (17)

 ∗(r∗
0 + 2�r∗; �) =  ∗(r∗

0 ; �) + 2�r∗ @ ∗

@r∗ +
(2�r∗)2

2
@ ∗2

@2r∗

+
(2�r∗)3

6
@ ∗3

@3r∗ +O
(
(�r∗)4

)
(18)

where r∗
0 = r0=L and r0 is the radius of the particle.

Eliminating (@ ∗3=@3r∗) between Equations (17) and (18) and using the expressions for
V ∗
r ; V ∗

� ; �∗; @ ∗=@r∗, and @2 ∗=@r∗2 from Equations (15) and (16), the equation for �∗(r∗
0 ; �) is

obtained as

�∗(r∗
0 ; �) =

(
−6�r∗+2(�r∗)2

r∗
0

)
V ∗
� (r

∗
0 ; �)− (8 ∗(r∗

0+�r∗; �)−  ∗(r∗
0+2�r∗; �)− 7 ∗(r∗

0 ; �))

2(�r∗)2

− 1
r∗
0

@V ∗
r

@�
(19)

Liu and Wang [14] have developed a method to calculate the boundary values of the
streamfunction on a �xed boundary of a multi-connected domain. In the case of a �xed
boundary, the streamfunction is constant along a surface that represents a closed contour in
a 2-D space while in the moving boundary case the streamfunction is a function of location
(x; y) on the surface and time t. In Reference [14], the momentum equation is multiplied by
a unit tangential vector � to obtain the boundary condition for the streamfunction. The same
idea is utilized in this study for the moving boundary problem.
Multiplying Equation (1) by a unit tangential vector � along the moving boundary of the

particle, the following is obtained:

�0

(
@V�

@t
+ (V · ∇)V�

)
= − @pe

@� + ��V · �+ nm�m��mg · � (20)

Transforming Equation (20) into the dimensionless form, noting that �V · �= − (@�=@n), and
ignoring the pressure di�erence along the boundary of the particle (because both bioconvection
and settling velocities are small), the following is obtained:

@�∗

@n
= M (21a)

where M = − 1
Sc

(
@V∗

�

@t∗
+ (V∗ · ∇)V∗

�

)
− Rmnmŷ · �̂ (21b)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:511–530



518 P. GENG AND A. V. KUZNETSOV

Discretizing Equation (21a) at the surface of the particle

@�∗(r∗
0 ; �)

@n
=

−3�∗(r∗
0 ; �) + 4�

∗(r∗
0 + �r∗; �)− �∗(r∗

0 + 2�r∗; �)
2�r∗ =M (22)

Substituting Equation (19) into Equation (22) and solving for  ∗(r∗
0 ; �)

 ∗(r∗
0 ; �) =−4(�r∗)3M − 8(�r∗)2�∗(r∗

0 + �r∗; �) + 2(�r∗)2�∗(r∗
0 + 2�r∗; �)

21

+

(
6�r∗ − 2 (�r∗)2

r∗
0

)
V ∗

� (r
∗
0 ; �)

7
+
8
7
 ∗(r∗

0 + �r∗; �)

−1
7
 ∗(r∗

0 + 2�r∗; �) +
2
7
(�r∗)2

r∗
0

@V ∗
r

@�
(23)

Equations (19) and (23) provide necessary boundary conditions for the streamfunction and
vorticity on the surface of the moving particle.
Initially, at t∗=0, the bioconvection plume is fully developed (see Figure 2). The particle

is released with zero initial velocity at some distance beneath the free surface to keep all
subgrid nodes inside the computational domain.

2.5. Numerical procedure

A conservative �nite-di�erence scheme is utilized to discretize the governing equations in both
Cartesian and polar coordinate systems. An implicit scheme with Euler backward di�erencing
in time and central di�erencing in space is utilized. A line-by-line tri-diagonal matrix algo-
rithm and iteration technique with over-relaxation for the number density of microorganisms
on the global grid and under-relaxation for other variables for both global and subgrid nodal
points is used to solve the nonlinear discretized equations. A staggered mesh is utilized in
which the streamfunction and vorticity are stored in one nodal set while the number density
of microorganisms is stored in another nodal set. The mesh is chosen such that the num-
ber density nodes lie in the interior of the computational domain while the streamfunction
and vorticity nodes lie in the interior and at the boundary of the domain. Computations are
performed on a single 3:0 GHz Intel Xeon processor on the North Carolina State University
IBM p690 supercomputer. The typical CPU time required for computing particle settling from
just beneath the free surface to near the bottom of the computational domain (on a 36× 36
uniform global mesh and a 15× 36 non-uniform polar mesh) is approximately 50h. Numerical
stability requires the dimensionless timestep of 2× 10−7; the average number of iterations per
timestep is 100 (in the beginning of settling the number of iterations is large and it decreases
at the settling process goes on). The convergence criterion is that the maximum relative vari-
ation of the dimensionless vorticity, streamfunction, and number density of microorganisms
in every nodal point between two iterations does not exceed 10−7.

3. RESULTS AND DISCUSSION

Values of the physical properties, geometrical parameters, and dimensionless parameters uti-
lized in computations are summarized in Table I. One of the aims of computations is to
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Figure 2. Steady-state bioconvection plume: (a) dimensionless num-
ber density of microorganisms; (b) contour lines of the dimensionless
vorticity; and (c) contour lines of the dimensionless streamfunction.

investigate the e�ect of the settling particle on the bioconvection plume. Five cases (A–E)
with di�erent particle release positions, di�erent particle densities, and di�erent number of
periodic cells (one or two) in the computational domain are investigated. Parameter values
for these �ve cases are summarized in Table II. To ensure that all subgrid point are located
within the global mesh, the particle is released at some distance beneath the free surface (the
vertical position of the free surface is y∗=1:0, the centre of the particle is initially located
at y∗=0:8, the subgrid extends to r∗=0:1674).
Bioconvection is fully developed and steady-state before the particle begins to settle.

Figure 2 displays the steady-state bioconvection plume at t=0. Figure 2(a) shows the
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Table I. Physical properties, geometrical parameters, and values of dimensionless parameters
utilized in computations.

Average number density of microorganisms �nm 1012 cells=m3

Density of water �0 103 kg=m3

Density of microorganisms �m 1:05× 103 kg=m3
Volume of a microorganism �m 5× 10−16 m3

Average swimming velocity of microorganisms Wm 10−4 m=s

Di�usivity of microorganisms Dm 5× 10−8 m2=s
Gyrotaxis orientation parameter B 5 s

Kinematic viscosity of the suspension � 10−6 m2=s
Height of the periodic cell H 0:005 m
Width of the periodic cell L 0:005 m
Dimensionless average swimming
velocity of microorganisms W ∗

m =Wm
L
Dm

10.000

Schmidt number Sc=
�
Dm

20

Gyrotaxis number G=
BDm
L2

10−2

Bioconvection Rayleigh number Rm =
�nm�m��mgL3

�0�Dm
612.5

Aspect ratio of the periodic cell �=
H
L

1

Radius of the particle r0 9× 10−5 m

Density of the particle �p 1.2× 103 or 1:4× 103 kg=m3

Table II. Initial positions of the centre of the particle for Cases A–E.

Case A Case B Case C Case D Case E

x∗ 0.0 0.3 0.5 0.3 0.3
y∗ 0.8 0.8 0.8 0.8 0.8
�p
�0

1.2 1.2 1.2 1.2 1.4

Number of periodic cells in
the computational domain 1 1 2 2 1

dimensionless number density of microorganisms, Figure 2(b) depicts contour lines of the
dimensionless vorticity, and Figure 2(c) displays contour lines of the dimensionless stream-
function. Number density of microorganisms takes on its maximum value in the centre of the
free surface of the computational domain while bioconvection plume is located in the centre
of the domain. Fluid �ow is directed downward in the centre of the domain and upward at
its periphery.
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Figure 3. Conditions necessary for periodicity: (a) particle is released in the centre of the chamber;
and (b) particle is released at one side of the chamber.

In Case A, the particle is released in the centre of the computational domain, directly
in the centre of the falling bioconvection plume. It is assumed that the events happening
within the periodic cell are not in�uenced by other plumes in the neighbouring periodic cells.
This assumption implies that neighbouring periodic cells each contain a particle settling in
the centre of the cell (see Figure 3(a)). Figure 4 shows the dimensionless number density of
microorganisms and contour lines of the dimensionless vorticity and streamfunction at di�erent
moments of time (t∗=0:0001 and 0.0007). From Figure 4 it is evident that the settling particle
that goes through the bioconvection plume extends the length of the plume. Microorganisms
are transported deeper into the chamber by the plume; for example, comparing Figures 4(a)
and 2(a) one can see that the local maximum of the number density of microorganisms is
displaced downward from y∗=0:4 to approximately y∗=0:3.
Figure 5 shows the dimensionless number density of microorganisms and contour lines of

the dimensionless vorticity and streamfunction at di�erent moments of time (t∗=0:0001 and
0:0007) for Case B. As in Case A, it is assumed that the events happening within the periodic
cell are not in�uenced by other plumes in the neighbouring periodic cells. In case B, this
assumption implies that the neighbouring periodic cell contains a particle whose initial position
is symmetric with respect to the vertical boundary of the periodic cell (see Figure 3(b)). The
bioconvection plume is pushed away from the particle during sedimentation. This suggests
that the location and the shape of the bioconvection plume can be manipulated by introducing
a solid particle into the plume.
To investigate how the upward bioconvection �ow a�ects particle sedimentation, a particle

is released between two identical bioconvection plumes (Case C). To compute this case, the
width of the computational domain is doubled (in case C it is 2L) in order to include two
periodic cells (see Figure 6). In computing this case, the symmetry of the problem is utilized
in the numerical code and the vorticity and streamfunction �elds are made antisymmetric with
respect to the vertical plane x∗=0:5. Due to this symmetry, the x-viscous force and the torque
on the particle vanish.
Figure 6 shows the dimensionless number density of microorganisms and contour lines

of the dimensionless vorticity and streamfunction at di�erent moments of time (t∗=0:0001
and 0:0007) for Case C. In the beginning of the process, while the particle settles in the
centre of the computational domain, bioconvection plumes, which are located on both sides
of the particle, keep their symmetry. As settling continues, the plumes are pushed away from
the particle and are shifted to the sides of the domain; their symmetry (with respect to the
centreline of the plume) is broken.
To investigate the e�ect of two neighbouring plumes on particle sedimentation, in Case D

(as in case C) a computational domain that consists of two periodic cells is utilized, but, unlike
Case C, the particle is released non-symmetrically. The dimensionless distance between the
particle release position and the centre of the left bioconvection plume is 0.3 and the distance
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Figure 4. Case A: (a) dimensionless number density of microorganisms; (b) contour lines of
dimensionless vorticity; and (c) contour lines of dimensionless streamfunction.
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Figure 5. Case B: (a) dimensionless number density of microorganisms; (b) contour lines of
dimensionless vorticity; and (c) contour lines of dimensionless streamfunction.
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Figure 6. Case C: (a) dimensionless number density of microorganisms; (b) contour lines of
dimensionless vorticity; and (c) contour lines of dimensionless streamfunction.

between that and the centre of the right plume is 0.7. Figure 7 shows the dimensionless number
density of microorganisms and contour lines of the dimensionless vorticity and streamfunction
at di�erent moments of time (t∗=0:0001 and 0.0007) for Case D. The settling particle pushes
both bioconvection plumes away as it settles. The left bioconvection plume is pushed farther
away than the right one meaning that the particle has more e�ect on the plume which is
closest to it.
Figure 8(a) displays the dimensionless x-velocity of the particle, V ∗

x , Figure 8(b) displays
the dimensionless y-velocity of the particle, V ∗

y , and Figure 8(c) displays the dimensionless
angular velocity of the particle, !∗, for Cases A–C. Figure 8(a) shows that the particle
in Case B has the largest x-velocity because the particle is involved in the bioconvection
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Figure 7. Case D: (a) dimensionless number density of microorganisms; (b) contour lines of
dimensionless vorticity; and (c) contour lines of dimensionless streamfunction.

�ow, which in Case B at the particle release position has the largest horizontal velocity
of the three cases. In Case B the particle is released close to the vertical boundary of the
periodic cell. Physically, the largest horizontal displacement of the particle results from the
e�ect of this periodic boundary. In Case D (see Figures 7 and 9) it is shown that if the
computational domain is enlarged to include the second periodic cell, the particle displacement
in the horizontal direction becomes much smaller. In Cases A and C the bioconvection �ow
a�ecting the particle is entirely vertical (the �ow is upward for Case C and downward for
Case A). Although in Case A the initial position of the particle centre is exactly in the
centre of the bioconvection plume, the particle sedimentation is not strictly vertical but shows
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Figure 8. (a) Dimensionless x-velocity, V ∗
x , of the particle; (b) dimensionless y-velocity, V ∗

y , of the
particle; and (c) dimensionless angular velocity of the particle, !∗, versus time for Cases A, B, and C.

a small (50 times smaller than in Case B) displacement in the horizontal direction. This
displacement is caused by numerical inaccuracies. However, there is a di�erent way to look
at this result. As particle settles in the centre of the bioconvection plume, a small disturbance
(which is modelled by a numerical error in computations) can break the symmetry and make
the particle shift to either side. Once the particle is shifted, its displacement from the centre of
the domain increases monotonically. This small horizontal velocity is not observed in Case C
because, as explained above, the symmetry of the problem is utilized in numerical formulation
in computing Case C.
In Figure 8(b), the downward velocity decreases as the particle settles. Its settling y-velocity

approaches a constant value, which is the particle terminal velocity caused by the balance of
gravitational and viscous forces. The viscous force is calculated using an empirical correlation
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Figure 9. The path of the particle centre for Cases B, D and E.

provided by Sucker and Brauer [16] for a drag coe�cient in a �ow past a cylinder of unit
length

CD=
FD

�0U 2r0
≈ 1:18 + 6:8

Re0:89
+
1:96
Re0:5

− 0:0004Re
1 + 3:64× 10−7Re2

(24)

where Re=2Ur0=�.
The particle terminal velocity, U , which is shown by a horizontal line in Figure 8(b), is

found by equating gravitational and viscous forces

FD=(�p − �0)(�r20)g (25)

Figure 8(b) shows that particle velocities at the end of the sedimentation process approach
the particle terminal velocity (obtained using experimental correlation (24)) in all Cases A–C,
which validates the obtained numerical results. This �gure also shows that Case A has the
largest Vy; this is because the particle release position in this case is in the centre of the plume
where the downward velocity of the bioconvection �ow is the largest. The absolute value of
the downward velocity in Case B is smaller than that in Case C; this happens because the
upward bioconvection �ow at x∗=0:3 (particle release position for Case B) is stronger than
that at x∗=0:5 (particle release position for Case C).
As seen from Figure 8(c), the particle in Case A has a small non-zero angular velocity,

which is caused by numerical inaccuracies (physically, because of the symmetry, the particle
angular velocity in Case A must be zero). In Case C, the angular velocity of the particle is
exactly zero because symmetry of the problem is explicitly utilized in computing this case by
making the vorticity and streamfunction �elds antisymmetric. In Case B, the angular velocity,
!∗, is decreasing during sedimentation (its absolute value is increasing). This means that the
particle rotates in the counter-clockwise direction with an increasing speed.
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To study the e�ect of particle density, a heavier particle is considered in Case E. In this
case the particle release position and the computational domain size are identical to Case
B. The paths of the particle centres during settling for Cases B, D, and E are displayed in
Figure 9. The particle’s path for Case E is similar to that for Case B but has larger dis-
placements in both horizontal and vertical directions by the end of sedimentation. In Case
D, the particle is displaced toward the centre of the closest plume during the �rst half of
the sedimentation process; this is caused by the direction of the bioconvection �ow in the
beginning of particle sedimentation. During the second part of the sedimentation process, the
direction of the bioconvection �ow changes and the particle is displaced away from the centre
of the closest plume. The e�ect of the bioconvection plume in a neighbouring cell is seen
from comparing particle’s paths for Cases B and D. Neglecting the bioconvection plume in
a neighbouring cell and imposing a stress-free impermeable boundary between the two cells
results in a larger particle displacement away from this boundary in Case B.

4. CONCLUSIONS

A numerical method based on the streamfunction-vorticity formulation for the case of a
multi-connected domain with moving boundaries is developed. This method is utilized to
investigate settling of a large solid particle suddenly released in a chamber with a fully devel-
oped bioconvection �ow caused by gyrotactic microorganisms. The particle settling changes
the shape and location of the bioconvection plume. The particle settling is also a�ected by
bioconvection. Because of bioconvection, the particle is pushed in both vertical and horizontal
directions. Five di�erent cases are computed with di�erent particle release positions, di�erent
particle densities, and di�erent sizes of the computational domain. It is found that restricting
the size of the computational domain to one periodic cell by imposing periodic boundary con-
ditions at the vertical boundaries of the domain pushed the particle away from the periodic
boundary. Numerical studies involving deeper chambers as well as physical experiments are
needed to gain further understanding of this problem.

NOMENCLATURE

a radius of a microorganism, m
B time scale for the reorientation of microorganisms by the gravitational

torque against viscous torque, 4��a3=mgh, s
Dm di�usivity of microorganisms, m2=s
g gravity vector, 9:81m=s2

G gyrotaxis number, BDm=L2
h displacement of the centre of mass of a gyrotactic microorganism from

its centre of buoyancy, m
H height of the chamber, m
J∗
m dimensionless �ux of microorganisms, de�ned in

Equation (14)
L width of the chamber, m
nm number density of microorganisms, 1=m3
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�nm average number density of microorganisms, 1=m3

n∗
m dimensionless number density of microorganisms, nm= �nm
p̂ unit vector indicating the direction of swimming of gyrotactic

micro-organisms
pe excess pressure (above hydrostatic), Pa
r radial coordinate, m (see Figure 1(c))
r∗ dimensionless radial coordinate, r=L
r̂ unit vector in the r-direction
Rm bioconvection Rayleigh number, �nm�m��mgL3=�0�Dm
Sc Schmidt number, �=Dm
t time, s
t∗ dimensionless time, Dmt=L2

U particle terminal velocity, m=s
V velocity vector, m=s
V∗ dimensionless velocity vector, VL=Dm
Vx horizontal velocity component, m=s
Vy vertical velocity component, m=s
V� tangential velocity component, m=s
Wm average swimming velocity of microorganisms (assumed to be constant),

m=s
W ∗
m dimensionless average swimming velocity of microorganisms,

WmL=Dm
x horizontal coordinate, m
x∗ dimensionless horizontal coordinate, x=L
x̂ unit vector in the x-direction
y vertical coordinate, m
y∗ dimensionless vertical coordinate, y=L
ŷ unit vector in the y-direction

Greek symbols

��m density di�erence between microorganisms and water, �m − �0; kg=m3

� horizontal component of vorticity, 1=s
�∗ dimensionless horizontal component of vorticity, �L2=Dm
�m volume of a microorganism, m3

� aspect ratio of the periodic cell, H=L
� dynamic viscosity, assumed to be approximately the same as that of

water, kg=ms
� kinematic viscosity, assumed to be approximately the same as that of

water, m2=s
�0 density of water, kg=m3

�m density of microorganisms, kg=m3

�p density of the particle, kg=m3

 streamfunction, m2=s
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 ∗ dimensionless streamfunction,  =Dm
! angular velocity, 1=s
!∗ dimensionless angular velocity, (L2=Dm)!
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